
1

1. Introduction
2. Software Utilities

2.1 Interprocess Communication
The authors of this section are Laura Paterno and Stu Fuess. The
interprocess communications package chosen will be used by software
projects in WBS #s 1.5.3, 1.5.4, 1.5.5, 1.5.6.1 - 1.5.6.10, 1.5.7, 1.5.8, 1.5.9
and 1.5.10

2.1.1 Introduction
Many processes used during Run I need to communicate with each
other across the Online Host network. The communication layer
was provided by the InterProcess Communications (ITC) package.
ITC was written in Pascal and used the Digital DECNet protocol to
allow processes to communicate with each other across a local
network. A later product, known as the Client/Server Package
(CLSPKG), extended the functionality of ITC to provide many of
the features necessary for multiple client processes communicating
with a single or multiple servers. However, it was only used by a
small handful of processes.

2.1.2 Requirements
• Platform independence
Work on VxWorks, UNIX (SGI and DEC Alpha), and NT at
minimum.
• Support message-based communication and buffer
management
• Designed with OO methodology
For flexibility, extensibility and maintainability
• Written in C++
• Threads support
Have POSIX and NT thread support at minimum

2.1.3 Details
The design of a complex system like interprocess communication
with all the necessary requirements listed above is not a trivial one.
Therefore, we will be using a product called the ADAPTIVE
Communication Environment (ACE)1 written by Douglas Schmidt,
a professor at Washington University in Computer Science.
ACE is a freely available object-oriented toolkit that provides
common network programming tasks across a wide range of
operating systems. These tasks include interprocess
communication, thread and synchronization support, event
demultiplexing (receives signals-based, timer-based, I/O-based,
synchronization based events) and event dispatching, and other

2

higher level tasks. It also provides many examples on using the
components of ACE.
ACE has many of the features that we want but not all. It provides
stream-based and not message-based communication. We would
definitely like message-based communication and will have to
write that feature ourselves. Also ACE does not handle buffer
management and we will need to write this as well. ACE does not
have enough examples for TCP/IP sockets, which is how we will
be communicating (for the most part) between processes.
Therefore, some examples with TCP/IP need to be written. Some
documentation is provided in the form of papers published by the
author of ACE but this is not sufficient. We will have to provide
our own documentation for people to understand.

2.1.4 Schedule

Project
Duration
(weeks)

Target Date

Install ACE

SGI (Irix 5.3) 2 1 December 1997

SGI (Irix 6.2) 1 9 January 1998

NT (4.0) 1 1 December 1997

VxWorks (5.2) 1 15 January 1998

DEC Alpha Server 1 – 2 15 February 1998

Example TCP/IP Code 4 15 January 1998

Add message-based communication 8 – 12 1 March – 1 April 1998

Add in buffer management 4 – 6 1 April – 1 May 1998

Documentation 4 – 8 1 March – 1 April 1998

Total 26 - 37
Table 2-1 - Schedule for IPC Package

2.1.5 Resources
1 FTE (100% of time) will be required to complete this project.
The workload will be reduced after short period of time (4 – 5
months) to maintenance and occasional enhancements (upgrades)
of the product.

2.2 User Interfaces
Databases

3

The authors of this section are Stan Krzywdzinski and Laura Paterno. All
of the online databases will be used in conjunction with most of the online
software defined by WBS #s 1.5.3 to 1.5.10.

Introduction
During DØ Run I, two Database Management Systems (DBMSs)
were used to manage pertinent information for the online system.
They include DBL3 and DEC Rdb.
 DBL3 is a CERN database product that provides keyed access to
information using the ZEBRA RZ file structure. It was used for
managing detector calibration and monitoring information that was
stored on-line, compressed and distributed to the off-line
processing cluster. This product was chosen in part because of its
platform independence.
DEC Rdb2, a commercial relational DB product from Digital
Equipment Corporation, was used for the Tape Log DB, and the
Hardware DB. The Tape Log DB kept track of all run, trigger,
filter and raw file and tape information taken online. The Hardware
DB was used in the online system to provide device access
information to the front end system for control and monitoring
purpose.

Needs
A wide variety of information will need to be maintained during
Run II. Calibration, monitoring, luminosity, run summary, trigger,
filter and event information will need to be stored when data taking
resumes. In addition, geometry and alignment information will also
need to be stored. Access information for hardware devices, used
for control and monitoring purposes, will also be needed.

Calibration databases
The Run I DBL3 calibration databases stored information
for the Calorimeter, Central Tracking System, Muon
System, Level Ø, etc. The largest of them was the
Calorimeter database which consisted of 30 (each
300Kbyte uncompressed or 125Kbytes compressed) files.
The rest were much smaller in comparison and several
were barely used. They were accessed once per run for
reconstruction purposes. They were all keyed by run
number with a secondary key by time.
In Run II the Calorimeter will remain unchanged (except
for the electronics) and the rest of the systems will either be
upgraded or replaced. The Calorimeter calibration will not
change but the estimated size of the Run II database is 10
times what it was for Run I. The requirements for the other
databases are currently unknown.

4

Monitoring databases
During Run I many of the monitoring programs also stored
information into DBL3 databases. These databases include
the DBMON, HV, Luminosity and Run Summary
databases. All of these databases will again be needed for
Run II.

Controls Database (formerly Hardware DB)
In Run I the Hardware DataBase (HdB) was a single DEC
RDB database (18.4 Mb). It was used in the monitoring and
control of the DØ experiment. It stored all of the essential
attributes of the hardware and provided CDAQ processes
with the access path information required to read from or
write to a device. It contained information on detector
systems, low and high voltage power supplies, cryogenics
and argon purity monitoring, and environmental
conditioning. The database also served as the master copy
of the local databases, which resided in the front-end
computers. Fast access and reliability was required for this
database. The kind of information stored in the Hardware
Database will be needed for Run II.

Tape Log DB
During Run I this database was a multifile DEC RDB
database (446 Mb) used to store raw file, trigger, filter and
begin-end run information. Information was written into it
by several online processes and read by offline processes.
Some form of this database will be required for Run II.

Requirements
Below is the list of requirements necessary for all the online
databases that will be necessary for Run II.
Be commercially supported.
Allow automatic replication (copying) of a database across DØ
supported platforms.
Meet performance requirement needs for Run II
On-line calibration data must be accessible no later than 5 minutes
after a calibration run has finished.
Robust and corruption free performance
Others as we are told what they are.
Performance must scale for the expected number of users and size
of the database. It should take into account that the database may
be replicated to help improve performance.
Work in a fully-distributed, multi-platform environment
Be standards compliant

5

Must have sufficient Database administration tools to do
optimization and setup of the database.
Provide database monitoring capabilities.
Preferences
Provide query access via the Web.
Currently, we are looking at using Oracle as the Run II database.
However, this may or may not be the final solution.

Details
The Controls Database will be the first database to be designed and
implemented. This also entails writing an interface(s) capable of
generating extracted forms of the Controls Database (e.g. for
EPICS and other online control and monitoring tasks). The
database will need to keep track of the same device specific
information as in Run I. Since the database needs to be redesigned
new information will probably be added.

Schedule
Once the DEC Alpha system is available in January 1998,
development of the online databases can begin. In the meantime,
work is going on to understand how to use Oracle. Databases and
access/updating code will need to be written for all the databases
required for Run II.

Project
Duration
(weeks)

Target Date
Purchase Database Software 6 15 February 1997
Install Software 2 1 March 1998

Total

Table 2-2 - Schedule for Databases
Resources

At least 3 core database developers/managers (1/2 FTE each) will
be needed to implement and modify the databases required. In
addition, 1 developer per database will be needed to write the
software to update and access the database.
The 3 core developers would provide the software for updating and
accessing the Controls Database. It will also need to have the
information stored into the database as well. This will require that
the various detector groups provide someone to fill the database
with the information necessary for their detector.
For calibration databases they would be provided by various
universities, most likely graduate students, working on that part of
the detector.
An additional person per database to maintain and check the
integrity of each database during its lifetime is also recommended.

6

Costs
All database software to be purchased falls under WBS #1.5.1.5
(Online Software Budget). The current plan is to use the Oracle
database software from Oracle, Inc running on a DEC
AlphaServer. As yet no software has been purchased.

3. Run and Configuration Control
3.1 COOR
3.2 Run Control

4. Event Data Path
4.1 Level 3 Interface
4.2 Data Logger

The authors of this section are Gene Oleynik and Fritz Bartlett. The
associated WBS section is 15.5.5

4.2.1 Introduction
This section covers the data logging online system from receipt of
events from level 3 processors to submission to the Reconstruction
Input Pipeline (RIP) for central archival. The logger is responsible
for taking event data from L3, buffering and packaging it for
archival by RIP, and assuring all event data for a run is archived to
RIP at the end of run.
The main functions of the logger are:
• Receipt of event data from the L3 processors
• Sorting by trigger bits into non-overlapping Physics
Streams
• Spooling stream data to disk files and maintaining the file
space
• De-spooling completed stream files into the RIP system
• Buffering against RIP downtime and other error recovery
• Providing redundant storage for smaller streams
• Participating in run control to flush the data at end of run
• Providing statistics for monitoring
In this section, “streams” has a specific meaning. Streams divide
events up into exclusive classes based on their anticipated physics
analysis access. Data from a given stream will be physically stored
in Hierarchical Storage Module (HSM) by RIP to optimize access
by “freight-train” analysis. Current investigations indicate that
there will be on the order of 20-30 exclusive streams that have a
logarithmic distribution in events/year.
What the logger will not do is
• Log to tape locally

7

• Perform any manipulation of streams in order to optimize
RIP archival. This implies that RIP is responsible for optimizing
the file streams sent to it to prevent tape drive thrashing, etc.
• Perform any event data manipulation. In particular any byte
swapping or other formatting required prior to archival will be
performed in level-3 upstream of the logger.
The logger will runon multiple computers at the experiment to
accommodate the required aggregate 26 MB/s bandwidth and to
provide fault tolerance. The event data is spooled to disk files on
these computers, and completed files are shipped to central robotic
storage across optical fiber links via RIP.
The logger maps event trigger type bits to physics streams and
writes the event data to the appropriate stream file. There will be
one stream file open for each active stream during a run. When a
file reaches a maximum partition size, it will be submitted to the
RIP system (by a RIP defined API). When detecting an end of a
Run (expected to be from an end-run “event”), all stream files are
closed and immediately submitted to RIP. This implies that RIP
must handle file sizes from several Megabytes up to the maximum
file partition size. The file submission protocol between RIP and
the logger includes an acknowledgment from RIP when the file has
been successfully archived to tape. The local copy of the file is not
deleted until the acknowledgment has been received.
It is important that some of the smaller streams be redundantly
archived since their loss, such as due to a damaged tape, would
have a great impact on the physics analysis they represent. The
logger will need to duplicate these files to a redundant store,
perhaps a raid disk array.
The logger must buffer against RIP downtime for up to six hours.
This requires several Gigabytes of storage. For three data logging
machines this would be on the order of 100 GB/machine (1-3 1999
disks/machine). The logger will probably need to respond to run-
control commands, for example a manual close/flush. The logger
will be configured at startup through COOR messages.
Incoming data will need to be buffered in the local memory. It is
imagined that the Computing Division Data Flow Manager (DFM)
buffer management/service provider software will be used to
provide the memory management.
The logger will be the source of sample events for online
monitoring. It will queue event data through DFM to the Hoist
server software, which will serve events over the network. This
DART software was used during the last Fixed Target running

8

period, and provided non-blocking event data sampling, and, so,
will not impact mainline logging.

4.2.2 Requirements
The data logging system must satisfy the following requirements:
• Keep up with the continuous incoming and outgoing data rates
of 13 MB/s (26 MB/s aggregate)
• Buffer against RIP downtime and assure all received event data
is archived
• Provide for redundant archiving of the smaller streams
• Run on the platform of choice for logging

4.2.3 Dependencies
The following separate software is required for completion of the
logger:
• L3 event input interface – required 2nd quarter ‘98
• Event trigger type format – 2nd quarter ‘98
• RIP interface – 3rd quarter ‘98
• Interface to run-control/COOR – 2nd quarter ‘98
• Buffer management interface – 2nd quarter ‘98
• DA Monitoring interface (for statistics) – 3rd quarter ‘98
• Hoist interface - 3rd quarter ‘98

4.2.4 Schedule
The project has the following milestones:

Choose platform 1st Quarter ’98
Delivered Platforms 2nd Quarter ‘98

Software 3rd quarter ‘98

Purchase spooling and redundant disk drives 1st Quarter ‘99
Figure 1 - Milestones

4.2.5 Resources/Manpower
The Computing Division will provide the manpower for this effort.
D0 will provide a consulting contact to work with the Computing
Division. This project is projected to take 5-6 person months for
design, coding and testing.
The Computing Division has developed logging software for the
last Fixed Target program that has functionality similar to that
required by D0. In particular the DART software DOT and DUF
provided event spooling to disk and despooling to tapes with
routing based on trigger type. If not the software, some of the
concepts and expertise from this software can be reused.

4.2.6 Costs

9

Costs are for disk drives for buffering and covering RIP down time
and redundant storage of small streams and up to three logging
machines.
• Glitch, spooling, and raid redundancy disk $50K (wild guess)
• Logging machines $50

4.3 RIP Interface
4.4 System Monitoring
4.5 Event Distribution
4.6 Event Monitoring

4.6.1 Framework
4.6.2 Detector
4.6.3 Physics and Expressline Analysis

5. Calibration
5.1 Framework

Section Author: Iain A. Bertram.
WBS Number 1.5.9.
Tuesday, 16 December 1997
The Calibration Framework is a software package that will run control the
various detector calibration tasks. It will be required to initiate each of the
sub-detectors calibration tasks, return the results, and notify the user of
any errors that occurred during the calibration task. In addition the
framework will be required to compare the results with previous
calibration runs, provides standard plots of the results, and store the results
in the online calibration database. In some cases the detector calibration
tasks will adjust the parameters that will be downloaded to the detector at
the beginning of each run, if this occurs the Framework will be required to
adjust all relevant database entries and down-load files (WBS 1.5.4).

5.1.1 Requirements
The Calibration Framework will be required to satisfy the
following:
• Will run on the online DEC alpha system.
• Will use standard GUI interface and set of plotting tools that
work on all supported platforms in the control room (PC’s and
Workstations), possibly developed using the Python language.
• Database tools to enter information into the database (written
in Python or C++) see Section????.
• Database tools to review information already stored in the
database. These tools will need to be flexible enough to allow
experts to use the calibration information for debugging detector
problems.
• Disk space for the Online Calibration database (see next
section).

10

In addition the following software resources will be required for
the framework:
• Python GUI toolbox for designing user interface
• Database tool box for implementing database access routines

5.1.2 Schedule
• April 1998: First Version of the Code interfacing the Silicon
Calibration Task with the Database.
• Undetermined

5.1.3 Resources
• Physicist: 0.2 FTE 1 year

5.1.4 Dependencies
The Calibration Framework will require the following:
• A working Online Database.
• Operational detector calibration tasks (See Section Error!
Reference source not found.)
detector before they can be completed.

5.2 Detector Components
Each of DØ’s sub-detectors will require a calibration tool that measures
the necessary calibration constants for that detector. The tool will be
required to issue the commands required to run the hardware required by
the calibration task, collect the data, analyze the data, provide the resulting
calibration constants and report any errors in the calibration.
The requirements of the detector calibration tools will vary depending on
the use that the calibration information will be used for.
The sub-detectors that will require calibration tools are: the calorimeter,
the silicon tracker, the central fiber tracker, the muon system, the pre-
shower detectors (central and forward), the forward proton detector, and
the luminosity monitors (unsure if this detector plans on having calibration
runs).
The calorimeter’s calibration tool will be based on the Run I tool which
already exists. This tool needs to be updated for the new calorimeter
electronics and software standards that will be used in Run II. All other
detector calibration tools need to be written.

5.2.1 Requirements
The requirements depend on the detector being calibrated and in
most cases are yet to be determined.
• Calorimeter
♦ The task is required to be completed within 5 minutes.
♦ The tool will measure both pedestals and gains. The
measurements will be carried out on alternate days during running.

11

♦ The tool will measure the mean, the RMS width, and ten
monitoring histograms and report an error flag for each calibration
run.
♦ Using the data collected during every pedestal runs the tool
will calculate a mean and zero-suppression limit for each channel
to be downloaded to the calorimeter.
♦ 0.8 Gigabytes of disk space to store the calibration
constants in the online database.
• Silicon
♦ The tool will measure both pedestals and gains. The
measurements will be carried out on alternate days during running.
♦ The tool will measure the mean, the RMS width, and ten
monitoring histograms and report an error flag for each calibration
run.
♦ 2.4 Gigabytes of disk space to store the calibration
constants in the online database.
• Central Fiber Tracker and Preshower Detectors
♦ To be determined. The tools will probably be similar to the
Silicon tools, which are based on the SVXII readout chip.
• Muon, Forward Proton Detector, and Luminosity Monitoring
♦ To be determined.

5.2.2 Schedule
• The test version of the silicon calibration tool will be required
for testing of the calibration framework by April 1998.
• Undetermined

5.2.3 Resources
It is assumed that the various detector systems will be providing
the hardware required for calibrating the detector. This TDR is
only concerned with the software requirements.
• 0.2 FTE Physicist per detector (7 detectors)

5.2.4 Dependencies

12

5.3 Database
The Online Calibration Database will be used to store the results of each
calibration run for all of the sub-detectors as well as a set of standard
calibration constants used to check the performance of the detector.
Access to the online database must be fast enough so that is does not
provide a significant source of dead time.
 A copy of the Online Calibration database will be kept in the Off-line
database.

5.3.1 Requirements
Efficient and fast access tools.
~5 Gigabytes of disk space (Guess)

5.3.2 Schedule
A test online database will be required by the beginning of March
1998 so that the development of the Calibration Framework can
proceed. Additional schedule requirements are undetermined.

5.3.3 Resources
It will be assumed that the database group will provide the
resources required for the calibration database.

5.3.4 Dependencies
detector before they can be completed.

6. Control and Monitoring
6.1 Run I Legacy Code

The author of this section is J. Frederick Bartlett. The WBS section is
1.5.6.1

6.1.1 Introduction
During Run I, the majority of the process variables in the DØ
control system were serviced by Motorola 68K and IBM PC front-
end processors which were located on a local, dedicated token-ring
LAN (Local Area Network). These processors executed versions of
the ACNET control system software, developed by the Fermilab
Accelerator Division, that communicated with host-level processes
via the ACNET control protocol. Since the host computers for the
DØ control and monitoring system were located on an Ethernet
LAN, the DØ Controls Group built DEC microVax-based
gateways to handle message traffic between the token-ring and
Ethernet LANs.
The API (Application Program Interface) for the DØ control and
monitoring system was a library of routines collectively referred to
as CDAQ (Control Data AcQuisition) which provided repetitively
scheduled and one-time access to lists of process variables. A
process variable name, which was composed of a device/attribute
string, was translated to the network path description and ACNET

13

access parameters required by the ACNET message protocol
through a relational database.
The majority of the DØ -specific software on the host processors
was written in DEC Pascal, which is an extended dialect of the ISO
standard Pascal language. The gateway and front-end software was
written in either the PSOS3 or VaxEln4 dialects of Pascal.

6.1.2 Requirements
Since many of the process variables associated with the Run I
detector are carried over to Run II and since the existing front-end
processors and the connecting token-ring LAN worked very well
in Run I, there is no need to replace these components for Run II.
The ACNET sub-net must be integrated into EPICS (Experimental
Physics and Industrial Control System), the control system selected
for RUN II, in a seamless manner. Access to both ACNET and
EPICS process variables, as viewed by application processes
running on the host-level computers, must be identical.

6.1.3 Design
Merging the ACNET and EPICS sub-nets can be achieved in either
of two ways:
• Gateways–The gateways, in addition to their performing
the function of framing messages passing between the Ethernet and
token-ring LANs, could also become EPICS channel access
servers and transform the message contents between the EPICS
and ACNET control protocols. This is feasible since the two
protocols possess similar functionality.
• API–The application interface to EPICS could use an
optional EPICS product, called CDEV, which inserts an object-
oriented layer above the EPICS channel access client. The CDEV
layer is specifically designed to manage control sub-nets with
different protocols. This is possible because most process control
systems, as in the case of EPICS and ACNET, have similar
functionality.

6.1.4 Gateway conversion
The Run I gateway program, which is written in VaxEln Pascal,
executes under the VaxEln operating system, a discontinued
product of the Digital Equipment Corporation, and runs on the
discontinued microVax computer. In addition, the gateways
communicate with host-level processes via the DECNET network
protocol, which is not supported on most non-DEC platforms.
In order to be compatible with contemporary host platforms and in
order to minimize maintenance problems during Run II:

14

• The gateway program must be recoded in either the C or
C++ language, for which there are available compilers.
• The microVax processors must be replaced by ones similar
to other front-end systems used at DØ.
• The operating system must be changed to VxWorks5, the
same as that used on other EPICS front-end systems.
• The network message protocol must be changed from
DECNET6 to TCP/IP, the standard for most contemporary
platforms.
If it is decided that the gateways should also serve as converters
between the EPICS and ACNET protocols, this will executed as a
later phase and will require the installation of an EPICS channel
access server software in the gateways and the design of a protocol
converter,.

6.1.5 CDAQ conversion
The Run I application program interface to the control system,
CDAQ,:
• Is coded in an extended dialect of ISO Pascal
• Uses the DECNET network message protocol
• Is interfaced to the DEC VMS7 operating system
• Uses the DEC RDB relational database to store the process
variable access parameters.
In order to run on multiple platforms and be maintainable, CDAQ
must:
• Be recoded in the C or C++ language
• Use the TCP/IP network message protocol
• Use the POSIX standard operating system interface
• Use a relational database which operates on contemporary
host-level processors
In addition, the existing CDAQ process variable database must be
converted to a new database format.

6.1.6 CDEV modification
Installing ACNET as a control sub-net under CDEV requires
building a set of wrapper routines that convert CDEV's sub-net call
interface to the appropriate sequence of CDAQ function calls.

6.1.7 Dependencies
This section is dependent upon the Shea/Goodwin front-end
computers (WBS 1.5.6.7).

6.1.8 Schedule
The schedule has the following milestones:
.

15

Milestone Date

Gateway - Phase 0

CDAQ conversion

CDEV extension

Gateway - Phase 1
Table 6-1

6.1.9 Resources/Manpower
The principle resource for this project is programming time
according to the following table:

Project
Effort

(Person
Weeks)

Gateway conversion design - Phase 0 1

Gateway conversion coding - Phase 0 2

Gateway conversion testing - Phase 0 1

Gateway conversion design - Phase 1 2

Gateway conversion coding - Phase 1 4

Gateway conversion testing - Phase 1 1

CDAQ conversion design 1

CDAQ conversion coding 3

CDAQ conversion testing 1

CDAQ database conversion design 1

CDAQ database conversion coding 2

CDAQ database conversion testing 1

CDAQ database loading 1

CDEV modification design 1

CDEV modification coding 2

CDEV modification testing 1

Total 25
Table 6-2

16

6.1.10 Expenditures
6.1.11 Equipment

The principle equipment cost will be the purchase of three VME-
based processor boards for the gateways, at a cost of
approximately $5K per processor.

6.1.12 Software
There are no commercial software costs

17

6.2 High Voltage System
The author of this section is J. Frederick Bartlett. The WBS section is
1.5.6.2

6.2.1 Introduction
The high voltage sub-system, during Run I, was partitioned by the
major detector components, i.e. calorimeter, muon, etc. Each high
voltage partition consisted of an ACNET front-end processor, a
high-voltage master processor, and one to four subordinate
processors. Each subordinate processor "supervised" a single VME
crate that contained a maximum of six high-voltage modules with
each module housing eight Cocroft-Walton voltage generators for
a maximum count of forty-eight channels per crate. Several types
of voltage generator pods existed, supplying different voltage
ranges and polarities.
The subordinate processors directly managed the individual high-
voltage hardware channels, which were capable of executing only
simple operations. The subordinate processors presented to the
master processor a high-voltage channel object which was capable
of synchronized ramping, trip recovery, transient current spike
detection with optional trip, high resolution history logging,
detector-specific management functions, and other features.
The master processor was able to access a restricted block of VME
address space, which contained the channel objects, in each of the
subordinate crates through a Fermilab-designed vertical
interconnect module. This mapping allowed the master processor
to access a data structure associated with each channel, to initiate
state transitions for each channel, and to trigger the update cycle
for the subordinate processors. In addition, channels could be
associated in logical groups so that the trip of any member channel
could force the trip of all channels in the group. For the vertex
detector, where a voltage breakdown between wires could be
destructive, the master processor guaranteed that, during the
ramping process, specified voltage difference limits were never
exceeded.
A global high-voltage status program provided, in a single, high-
density display, a status summary of all of the high voltages
channels. A second operator program provided an interactive
display that could control as well as display detailed status for a
group of high-voltage channels. In Run I, each detector component
had a copy of the control program.

6.2.2 Requirements
For Run II, only the calorimeter and parts of the muon detector
will retain their original high-voltage configuration. In particular,

18

the vertex detector, with its strict channel voltage difference limits,
is no longer present. There are several new voltage generator units
covering the low voltage ranges required by the silicon vertex and
scintillating fiber electronics. The total number of high-voltage
channels is not expected to change significantly.
The platform dependence of the present system must be
eliminated, which implies a major rewrite of all of the host-level
software components. It may also be more economical to move
entirely to the use of EPICS as the control layer rather than the
ACNET sub-net with its dependence upon the Ethernet/token-ring
gateways and the now-outdated PSOS operating system.

6.2.3 Design
6.2.4 Front-End Server

There are two options. The simplest, although not necessarily the
most economical over the long term, is to retain the existing, three
levels of front-end processors (ACNET, master, and subordinate).
The other option is to eliminate the ACNET control front-ends and
the master processes entirely and to move the subordinate
processes to EPICS front-end nodes. This eliminates two levels of
processors in the current hierarchy with concomitant simplification
and improved reliability. The existing channel state machines
would require recoding in the C or C++ language to execute under
the VxWorks8 operating system and the channel objects would
then be incorporated into the EPICS record/device hierarchy.

6.2.5 Global Status Display Program
The global high-voltage status display program for Run II is
primarily a re-write of the Run I version to a platform-independent
form with the following major alterations:
• Conversion to the C or C++ language with, possibly, a
Python top layer
• Conversion to the POSIX standard operating system
interface
• Replacement of the CDAQ control interface with EPICS
(cf. Error! Reference source not found.)
• Use of a multi-threaded computational model
• Replacement of the character-cell graphics with Motif or a
similar graphics standard

6.2.6 Operator Control Program
The operator high-voltage control program for Run II is also
primarily a re-write of the Run I version to a platform-independent
form with the following major alterations:

19

• Conversion to the C or C++ language with, possibly, a
Python top layer
• Conversion to the POSIX standard operating system
interface
• Replacement of the CDAQ control interface with EPICS
(cf. section Error! Reference source not found.)
• Use of a multi-threaded computational model
• Replacement of the character-cell graphics with Motif or a
similar graphics standard
• Major alterations to the control algorithms

6.2.7 Dependencies
This section is dependent upon the Legacy Code from Run I (WBS
1.5.6.1) and the Shea/Goodwin front-end computers (WBS
1.5.6.7).

6.2.8 Schedule
The schedule has the following milestones:

Milestone Date
Server

Global display

Operator control
Table 6-3

6.2.9 Resources/Manpower
The principle resource for this project is programming time
according to the following table:

Project
Effort
(Person-
Weeks)

Server design 2

Server coding 3

Server testing 2

Global display design 1

Global display coding 2

Global display testing 1

Operator control design 4

20

Operator control coding 4

Operator control testing 2

Total 21
Table 6-4

6.2.10 Expenditures
6.2.11 Equipment

If the current HV front-end servers are replaced with EPICS-based
systems, each of the current slave processors must be replaced with
a processor having an integrated Ethernet controller at a cost of
approximately $5K per processor. Timing studies will determine
whether a single processor is capable of controlling and monitoring
more than a single HV crate, using the existing vertical
interconnect modules from Run I to map several VME crates into a
single processor’s address space.

6.2.12 Software
There are no commercial software costs.

6.3 Significant Event/Alarm System
The authors of this section are Stu Fuess and Laura Paterno. The WBS
section is 1.5.?.?.

6.3.1 Introduction
The Run I DØ Significant Event System, also known as the Alarm
System, consisted of several processes which worked together to
keep track of any problem in the DØ hardware or software while
the experiment was running. (A picture here would be good if we
have one).

6.3.2 Requirements
• Handle sudden bursts of 10000 alarms without losing one
or hanging the system it is running on
• Handle between 40 – 60 client connections

6.3.3 Dependencies
This project is dependent on the interprocess communications
package, ACE (WBS #1.5.6.10), the interface to the Controls
Database (WBS #1.5.6.8), the User Interface decision (WBS
#1.5.6.10) and EPICS (WBS #1.5.6.X).

6.3.4 Schedule
The schedule has the following milestones:

Milestone Date
Server

21

Logger

Watcher

Display

Scanner
Table 6-5

6.3.5 Resources/Manpower
The principle resource for this project is programming time
according to the following table:

Project
Effort

(Person-
Weeks)

Server design 4

Server Implementation 12

Server testing 8

Logger design 2

Logger implementation 2

Logger testing 2

Watcher design 1

Watcher implementation 2

Watcher testing 2

Display design 4

Display implementation 24

Display testing 8

Scanner design 2

Scanner implementation 4

Scanner testing 2

Total 79
Table 6-6

6.3.6 Expenditures
6.3.7 Equipment

The principle equipment cost will be ??.
6.3.8 Software

22

Are there any commercial software purchases involved?
6.4 EPICS Control System

The authors of this section are Jeff McDonald and Harrison Prosper. The
WBS section is 1.5.6.?.

6.4.1 Introduction
For online controls and monitoring of the DØ detector during run
II, the EPICS (Experimental Physics and Industrial Control
System) controls and monitoring software package will be used.
EPICS is a software package written by a collaboration of several
national laboratories and industries. The primary contributors to
EPICS are Los Alamos National Lab, Argonne National Lab and
Thomas Jefferson National Lab (formerly know as CEBAF).
EPICS provides the software components necessary to provide a
robust real-time, multi-platform control and monitoring system and
many of the graphical user interfaces that can be used to provide
operator interfaces. EPICS supports several field bus architectures,
including VME, CAMAC, and GPIB.

6.4.2 Needs
For the DØ detector, control and monitoring of the individual
components is critical to insure data reliability and to protect
against detector damage. Critical component information must be
obtained and, if necessary, provided to the operators so that any
actions necessary to maintain data reliability and a functional
detector. There are at least three critical needs of the control
system:
• OPI (operator interface)
• IOC (input/output controller, e.g. front end processor)
• LAN (local area network) for communication

6.4.3 Operator Interface
The DØ detector is composed of many subsystems and in turn,
those subsystems are composed of individual components. Failure
of any one of thousands of components must be reported to the
detector operators so that actions can be taken to prevent additional
damage or data loss. The operator must be provided with an
interface that highlights only necessary or critical information
while a run is in progress. EPICS provides a number of interfaces
that make this exchange of information possible and simple for the
operator.

6.4.4 Input/Output of Detector Elements
A control and monitoring system must provide software access to
the individual detector components that make up the system.
EPICS does this via the use of the VxWorks9 real-time operating

23

system in a Motorola 68k processor board. The VME chassis
provides the bus for the interaction of VxWorks and EPICS with
individual detector elements.
In additional, to providing the functionality required to
communication to standard detector devices, it is desired that the
control system make support of additional devices possible and
simple. EPICS provides this support via standard record and device
support routines.

6.4.5 Front End/ Host Communication
The front-end processor boards must distribute information back to
the host computers where the operators are located. The EPICS
control system component, channel access, is the backbone of the
communication between these two systems.

6.4.6 Requirements
Below is the list of requirements necessary for the online control
and monitoring of the DØ detector necessary for Run II.
• Be supported and widely used.
• Easily extended to new detector elements and detector
specific components.
• Meet operator needs for Run II
♦ Immediate and specific information about device failure,
device out of tolerance, or device error.
♦ Robust interface with an “error driven” design.
♦ Adaptability.
♦ Operator interface works on a variety of platforms.
• Communications standard between front-end computer and
hosts.
• Front-end computers use a standard, commercially support
real-time kernel.
• Be standards compliant.
• It is desired that any system conform to computing
standards outlined by the POSIX standard.
There are many supported record and device types already in
EPICS but if these types don’t meet our needs, more specific types
must be written

6.4.7 Dependencies

6.4.8 Schedule
The schedule has the following milestones:

Milestone Date

24

Table 6-7
6.4.9 Resources/Manpower

The principle resource for this project is programming time
according to the following table:

Project
Effort

(Person
Weeks)

Total 0
Table 6-8
.

6.4.10 Expenditures
6.4.11 Equipment

An offline host computer is necessary for cross-platform
development and the user interface. Each Motorola 68k processor
board costs about $5K. A VxWorks run-time license can be
purchased for about $400 per processor.

6.4.12 Software
There are no commercial software costs.
The EPICS system is freely distributed by the EPICS
collaboration. DART Secondary Data Acquisition
The author of this section is Stan Krzywdzinski. DART DAQ
systems will be implemented and used under the software project
defined by WBS #1.5.6.5, which is a sub-project of the Control
and Monitoring project.

6.5 DART Secondary Data Acquisition
6.5.1 Introduction

DART (Data Acquisition Real Time) was developed on Unix
(host) and VxWorks (front end) platforms by the Fermilab
Computing Division, in collaboration with several fixed target
experiments. DART consists of a number of components
(products), which are not constrained to any particular hardware
architecture. Components can be selected according to needs, then

25

tailored and extended. Tailoring involves writing script and
program interfaces using functions provided by the components.

6.5.2 Requirements
In the period before Run II, DART will be used for testing and
debugging the various components of the DØ detector. During the
Run II, the stand-alone DART systems (one per sub-detector and
independent of the DAQ proper), running in parallel and
asynchronously, will be used for diagnosing, checking out, and
monitoring the same components of the detector.
Initially implemented on the SGI/IRIX platform, the DART host-
level software will eventually be ported to Digital UNIX platforms.
• Portability across DØ supported platforms used in the
Control Path. This requires porting all of DART products, which
are needed by DARTDØ hosts, to Digital UNIX.
• Adequate rate of data transfer between front end(s) and a
host
• Handling of sub-events, from several front ends, across the
Ethernet and their concatenation on a host into a single event in a
self-describing format.
• System easy to adapt and/or configure for different sub-
detectors

6.5.3 Current status
In 1996/97 the DART components needed to service DA activities
in NWA Test Beam were put together, the interfaces written (as
DARTDØ test package), and the whole system tested and used.
The system is capable of acquiring the event data at a rate of up to
~600 kbytes/sec, from a single front end 68K MVME processor
running under VxWorks, over the Ethernet link, to an SGI host
running under IRIX 5.
 The DARTDØ system features:
• GUI panel on the host, which interfaces a user to run
control commands
• Logging data to a disk or/and tape(s)
• Monitoring and displaying of the event data
• Monitoring the data acquisition performance and displaying
its parameters
• Despooler, which copies to tape the data files that are
logged to a disk

6.5.4 Dependencies
This section is not dependent upon other components of the online
system.

6.5.5 Schedule

26

Currently DART runs under IRIX 5. Porting to IRIX 6 by
Computing Division is in progress and should be finished in
January of 1998. Porting to DEC Alpha under Digital UNIX
should be done after that (porting of DFM and DFM_HOIST
products will be done for the Event Distribution of DAQ proper,
under WBS #1.5.8).
Multiple sources of data (sub-events) should be implemented in the
first quarter of 1998. The already identified components to be run
on a host, Ethernet Gateway and Event- Builder, will be designed
and coded by the Computing Division. The project includes also
packing of sub-events at front ends, and unpacking them on host,
for efficient use of the Ethernet link.
The implementation of DARTDØ systems, configured for the
commissioning and then monitoring of various sub-detectors,
should proceed as needed.
The schedule has the following milestones:

Milestone Date

Porting DART to IRIX 6 02/01/98

DART support of multiple front-end nodes 03/01/98

Porting DART to Digital UNIX 04/01/98

DART detector-specific modifications ?
Table 6-9

6.5.6 Resources/Manpower
One FTE for 2 months is needed from Computing Division to
design and code multiple front-ends capability. One FTE for 2
months is needed from Computing Division to port to Digital
UNIX all DART products used by DØ. The Computing Division
will also provide consulting and help in setting up and extending
the capabilities of DARTDØ systems. One person from DØ,
understanding DART, is needed for bringing up, upgrades and
maintenance of the sub-detector systems.
The principle resource for this project is programming time
according to the following table:

Project
Effort

(Person
Weeks)

Porting DART to IRIX 6 8

27

DART support of multiple front-end nodes 8

Porting DART to Digital UNIX 8

DART detector-specific modifications 10

Total 34
Table 6-10

6.5.7 Cost
6.5.8 Equipment

There are no equipment costs associated with this project.
6.5.9 Software

There are no commercial software costs.

28

6.6 Clock System
The authors of this section are Laura Paterno and Fritz Bartlett. The WBS
section is 1.5.6.6.

6.6.1 Introduction
The Run I DØ Clock System consists of both hardware and
software components. The hardware system is composed of three
module types:
• Phase Coherent Clock (PCC)
• Sequencer
• Selector Fanout
The PCC receives timing signals from the accelerator, which are
used to lock a local clock generator and provided this clock to the
Sequencer. The Sequencer generates 23 programmable timelines,
which are sent to the Trigger Framework, Selector Fanouts, and
various sub-detectors. The Selector Fanouts also provide timing
signals to the Trigger Framework and to various sub-detectors.
Two Sequencers were used during Run I: one for the Muon System
and another for the other sub-detectorsystems.
The software used to control the Clock System in Run I consisted
of client and server components. Multiple clients could talk to a
clock server but only one clock server per sequencer could run at
any given time. The server only controlled the PCC and Sequencer.
The Selector Fanouts were initialized as a part of the begin-run
sequence.

6.6.2 Requirements
In Run II, the DØ Clock Hardware System will not change with
the possible exception of the functionality of the Sequencer. The
software for the system will, however, require modification. The
original code was written in an extended dialect of ISO standard
Pascal, required the VMS operating system, and used the Run I
InterProcess Communication (ITC) package described in the
Software Utilities section.
•
•
•
•
•
The clock server and client software must have the following
modifications:
• The source code must be translated to the C or C++ language.
This implies some functional redesign to effectively use object-
oriented methods.

29

• The operating system interface must be changed to the POSIX
standard for platform independence.
• The inter-process communication package must be replaced by
the Run II equivalent, ACE.
• A graphical user interface must be added to the client.
• Support for the new Sequencer must be added if it is upgraded.

6.6.3 Dependencies
The Clock System software is dependent on the new Interprocess
Communications package, ACE, (WBS 1.5.6), the Controls
Database (WBS 1.5.6.8), EPICS (WBS 1.5.6.4), and the
Significant Event System (WBS 1.5.6.3). However, the clock code
can be developed without access to the database or the Significant
Event System.

6.6.4 Schedule
The schedule has the following milestones:

Milestone Date

Table 6-11
6.6.5 Resources

The principle resource for this project is programming time
according to the following table:

Projects
Effort
(Person-
Weeks)

Server code 10

Client code 10

Interface 6

Total 26
Table 6-12
One FTE is needed to complete this project in ~6 months

6.6.6 Expenditures
6.6.7 Equipment

There are no equipment costs associated with this project.
6.6.8 Software

There are no commercial software costs.

30

6.7 Control Database
The authors of this section are Stan Krzywdzinski and Laura Paterno. The
WBS section is 1.5.6.8.

6.7.1 Introduction
In Run I the corresponding Hardware Database was a relational
one, implemented in DEC Rdb. It was used in the monitoring and
control of the DØ experiment. It stored all of the essential
attributes of hardware devices and provided the Control DAQ
(CDAQ) with the access path required to read from or write to a
device. In particular, it contained information on detector systems,
low and high voltage power supplies, cryogenics and argon purity
monitoring, and environmental conditioning. Being the central
database it also served as the master copy for down loading the
local databases, which resided in the front-end computers. Nominal
device readings and their limits stored in the database were used in
the Alarm System.
To enter the data into the database, three high level facilities
(written in C or FORTRAN) were provided as well as a library of
routines (written in PASCAL) to access the stored data by CDAQ
and other applications. The low level access routines, used by the
high level ones described above, were written either in RDML
embedded in C, or SQL embedded in FORTRAN. In addition, the
maintenance, monitoring and performance tools of DEC Rdb were
used. Fast access and reliability were required for this database and
it lived up well to these requirements.

6.7.2 Requirements
For Run II, the Control database will have to be redesigned in
ORACLE, the DBMS chosen and supported by Fermilab. The
amount of work involved in learning the new DBMS and redesign
the database depends on whether a relational or an object-oriented
version of ORACLE is used. Storage of data for the existing
detector systems and the new ones being built should be optimized,
using object-oriented concepts for repetitive, or derivable from a
seed device, device structures. The database access facilities, for
entering and extracting data as well as interfaces to the monitoring
and control systems to be supported by this database, will have to
be uniformly rewritten in C or C++.
 In particular, the database should be able to provide extractions in
text form for the Control DAQ, to be implemented under EPICS
(Experimental Physics and Industrial Control Systems) WBS
#1.5.6.4. .
The interfaces at the highest level should be implemented in
Python GUI (TkInter).

31

General requirements listed in a section covering on-line
Databases, WBS #1.5.11.3, apply here as well.

6.7.3 Schedule
Learning the DBMS selected should start immediately and in
parallel with a thorough review of the devices for all detector
systems to be stored in the database. Design of the database and
coding the interfaces should be done in close consultation with the
control and monitoring systems, which will be using the data from
the database. Next is the database population, testing the interfaces
and performance studies. Population of the database should be
made as easy and non-expert as possible, especially for a massive
(batch) mode.
The schedule has the following milestones:

Milestone Date

Table 6-13
6.7.4 Resources/Manpower

Two database experts are needed for the database design. One
expert could then implement and develop the related code. Once
the whole database system is functioning, but not necessarily all
data is entered into the database, one database administrator is
needed for its maintenance, performance monitoring, and future
enhancement. The principle resource for this project is
programming time according to the following table:

Project
Effort

(Person
Weeks)

Learn ORACLE and devices 6

Redesign database 4

Create database 2

Create access routines 8

Test access routines 2

Create extraction routines 6

Test extraction routines 2

32

User Interface 8

Fill database 8

Total 46
Table 6-14

6.7.5 Expenditures
6.7.6 Equipment

There are no equipment costs associated with this project.
6.7.7 Software

There are no commercial software costs since the laboratory has a
site-wide license for the Oracle product.

33

6.8 Cryogenic Controls Interface
This section was written by Laura Paterno. TheWBS section is 1.5.6.9.

6.8.1 Introduction
Information from the cryogenics control for both the Calorimeter
and Muon systems was recording in a database periodically (every
few minutes) during Run I. This information was need to help
reconstruct data offline into physics objects.

6.8.2 Requirements
• A database is necessary for storing the cryogenics
information
• Access to the cryogenics system via Ethernet to retrieve the
information.

6.8.3 Design
The DØ cryogenics system (see figure below) will have a new
hardware configuration for Run II. The system will consist of
Programmable Logic Controllers (PLCs) that are connected to the
physical hardware to be read out. The PLCs are connected via
Ethernet to the Supervisory Control and Data Acquisition
(SCADA) PCs that are used to control and monitor the IO devices.
One SCADA PC will be used for each subdetector (Calorimeter,
Muon, etc.) requiring cryogenics. Each SCADA will also have a
database, which is used to store the information for the subdetector
it is controlling/monitoring. The databases can be accessed by any
other system that uses the DDE/share, DDE, or ODBC protocols.
The online host system will have a database that will be able to
directly gather information from the SCADA PC databases. This
will either be done via a script that will update the online database
or a more sophisticated client/server solution.

6.8.4 Dependencies
The software written will be dependent on the database chosen for
the online system for Run II.

6.8.5 Schedule
The schedule has the following milestones:

Milestone Date

Table 6-15
6.8.6 Resources/Manpower

The principle resource for this project is programming time
according to the following table:

34

Project
Effort

(Person
Weeks)

Design database 4

Create database 1

Write scripting code 4

Total 9
Table 6-16
One FTE is needed to complete this project in ~2-3 months.

6.8.7 Expenditures
6.8.8 Equipment

A front-end, control interface processor may be required at a cost
of approximately $5K.

6.8.9 Software
There are no commercial software costs.

6.9 Detector-Specific Support
The author of this section is J. Frederick Bartlett. The WBS section is
1.5.6.10

6.9.1 Introduction
Each detector section (calorimeter, silicon vertex tracker…) has
unique and specific online system requirements for calibration,
performance monitoring, status display, and fault diagnosis.

6.9.2 Requirements
In order to minimize the online software development efforts of the
detector groups, an extensive library of common functions must be
identified and assembled into a library that is easily accessible and
well documented. The expectation is that most of the modules in
the library will be coded in either the C++ or Python10 languages.

6.9.3 Design
Most of the constituents of the detector support library fall in one
of the following categories:
• Display (graphical) tools
• Process variable access
• Inter-process and thread synchronization
• Status logging
• Run control and synchronization
• Frameworks (common solution patterns)
• Database access

6.9.4 Dependencies

35

This section is dependent upon Inter-task Communication (WBS
1.5.11.1), Legacy Code (WBS 1.5.6.1), Significant Event/Alarm
System (WBS 1.5.6.3), EPICS System (WBS 1.5.6.4), ACNET
Front-End System (WBS 1.5.6.7), and Control Database (WBS
1.5.6.8).

6.9.5 Schedule
The schedule is undetermined.

6.9.6 Resources/Manpower
The principle resource for this project is programming time
according to the following table:

Project WBS
Related
WBS

Effort
(Person-
Weeks)

Detector support library 1.5.6.10.1 None 8

Silicon vertex tracker 1.1.1 12

Scintillating fiber tracker 1.1.2 12

Preshower 1.1.3-4 12

Calorimeter 1.2 12

Muon 1.3 12

Trigger 1.4 12

Total 80
Other than components of the detector support library, which contains
utilities that are shared across one or more detectors, the majority of
the manpower for this project is expected to come from the individual
detector groups.
6.9.7 Expenditures
6.9.8 Equipment

The equipment costs for this project will come from the individual
detector budgets.

6.9.9 Software
There are no anticipated commercial software costs.

7. Accelerator Interface
7.1 Accelerator Console

The author of this section is Laura Paterno. The WBS section is 1.5.?.?.
7.1.1 Introduction

The Accelerator control room provided DØ with information vital
to doing luminosity calculations during Run I. This information

36

included xxx. The information was stored on the online host in a
database every few minutes.

7.1.2 Requirements
• A connection to the Accelerator ACNET database that is
reliable.

7.1.3 Dependencies
This section is dependent on the online database (WBS 1.5.6.10)
and the interprocess communications package, ACE (WBS
1.5.6.10).

7.1.4 Schedule
The schedule is undetermined.

7.1.5 Resources/Manpower
This project is not simple and will require a physicist (grad student,
post doc, or PhD) with knowledge of the accelerator and the how
to calculate luminosity.

Project
Effort
(Person
Weeks)

Total

7.1.6 Equipment Cost
????? Information Exchange

8. Hardware

